The Nervous System Part -2-

Ms. Mais Abdelhaq

Neurophysiology

- Neurons are highly excitable
- -Action potentials, or nerve impulses, are:
 - Electrical impulses carried along the length of axons
 - The underlying functional feature of the nervous system

Electricity Definitions

- Voltage (V) measure of potential energy generated by separated charge
- Potential difference voltage measured between two points
- Current (I) the flow of electrical (ions) between two points
- **Resistance** (**R**) hindrance to charge flow
- **Insulator** substance with high electrical resistance
- **-Conductor** substance with low electrical resistance

Electrical Current and the Body

- Reflects the flow of ions rather than electrons
- •There is a potential on either side of membranes when:
 - The number of ions is different across the membrane
 - •The membrane provides a resistance to ion flow

Role of Ion Channels

- Types of plasma membrane ion channels:
 - Passive, or leakage, channels always open
 - Gated channels open/close
 - Chemically gated channels open with binding of a specific neurotransmitter
 - Voltage-gated channels open and close in response to membrane potential
 - Mechanically gated channels open and close in response to physical deformation of receptors

Chemically Gated Channels

Voltage-Gated Channels

Mechanically Gated Channels

Electrochemical Gradient

• When gated channels are open:

- Ions flow along their chemical gradient move from an area of high concentration to an area of low concentration
- Ions flow along their electrical gradient when they move toward an area of opposite charge
- Electrochemical gradient the electrical and chemical gradients taken together

Membrane Potential

- Resting membrane potential
- Graded potential
- Action Potential

Changes in Membrane Potential

Changes are caused by three events

- Depolarization the inside of the membrane becomes less negative
- Repolarization the membrane returns to its resting membrane potential
- •Hyperpolarization the inside of the membrane becomes more negative than the resting potential

Resting Membrane Potential (V_r)

- The potential difference (-70 mV) across the membrane of a resting neuron
- It is generated by
 - Different concentrations of Na⁺, K⁺, C1, etc.
 - Changes in membrane permeability to ions

Figure 11.7 Measuring membrane potential in neurons.

© 2013 Pearson Education, Inc.

Graded Potentials

- Short-lived, localized changes in membrane potential
- Triggered by stimulus that opens gated ion channels
- Named according to location and function

Action Potentials (APs)

- A brief reversal of membrane potential with a total amplitude of 100mV
- Principal means of neuronal communication
- Occur only in muscle cells and axons of neurons
- They do not decrease in strength over distance
- An action potential in the axon of a neuron is a nerve impulse

Generating an Action Potential

4 main steps:

- 1 Resting state
- 2 Depolarization phase
- -3 Repolarization phase
- 4 Hyperpolarization

Action Potential: Resting State

• Na⁺ and K⁺ channels are closed

- Each Na⁺ channel has two voltage-regulated gates
 - Activation gates closed in the resting state
 - Inactivation gates open in the resting state

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Action Potential: Depolarization Phase

- •Na⁺ gates are **opened**; K⁺ gates are **closed**
- Threshold a critical level of depolarization (-55 to -50 mV)
- •At threshold, depolarization becomes self-generating

Action Potential: Repolarization Phase

- Sodium inactivation gates close
- Membrane permeability to N[†]a declines to resting levels
- As sodium gates close, voltage-sensitive K⁺ gates open

Action Potential: Hyperpolarization

- Potassium gates remain open, causing an excessive efflux of K⁺
- This efflux causes hyperpolarization of the membrane
- Na⁺ channels begin to reset

Figure 11.12: Phases of the action potential and the role of voltage-gated ion channels, p. 403.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Phases of the Action Potential

- -1 Resting state
- -2 Depolarization phase
- -3 Repolarization phase
- -4 Hyperpolarization

Threshold and Action Potentials

- Not all depolarization events produce Aps
- For an axon to "fire" depolarization must reach threshold
- At threshold
 - -membrane is depolarized by 15 to 20 mV
 - -Na⁺ permeability increases
 - -Na⁺ influx exceeds K⁺ efflux
- All-or-none phenomenon AP either happen Completely, or not at all

Refractory Periods

- Time in which neuron cannot trigger another AP
- Two types:
 - Absolute refractory period
 - Relative refractory period

Absolute Refractory Period

- Time from the opening of the Na⁺ activation gates until the closing of inactivation gates
- •The absolute refractory period:
 - Prevents the neuron from generating an action potential
 - -Ensures that each action potential is separate
 - Enforces one-way transmission of nerve impulses

InterActive Physiology ®: Nervous System I: The Action Potential, page 14

Relative Refractory Period

•The interval following the absolute refractory period when:

- -Sodium gates are closed
- Potassium gates are open
- Repolarization is occurring

Nervous System I: The Action Potential, page 15

Absolute and Relative Refractory Periods

Figure 11.15

Conduction Velocities of Axons

- Conduction velocities vary widely among neurons
- •Rate of impulse propagation is determined by:
 - Axon diameter the larger the diameter, the faster the impulse
 - **Degree of myelination** myelination dramatically increases impulse speed

InterActive Physiology ®: Nervous System I: Action Potential, page 17

Nerve Fiber Classification

Nerve fibers are classified according to:

Diameter

Degree of myelination

Speed of conduction

Nerve Fiber Classification

1. Group A fibers

Largest diameter Myelinated Transmits at 150 m/s (~300 mph)

2. Group B fibers

Intermediate diameter Lightly myelinated Transmits at 15 m/s (~30 mph)

3. Group C fibers

Smallest diameter Unmyelinated Transmits at 1 m/s (~2 mph)

Synapses

•A junction that mediates information transfer from one neuron:

- To another neuron
- •To an effector cell
- •**Presynaptic neuron** conducts impulses toward the synapse

•**Postsynaptic neuron** – transmits impulses away from the synapse

(b)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Figure 11.17

Synaptic Cleft

- •Fluid-filled space separating the presynaptic and postsynaptic neurons
- Prevents nerve impulses from directly passing from one neuron to the next
- Transmission across the synaptic cleft:
 - -Is a chemical event
 - Ensures unidirectional communication between neurons

Nervous System II: Anatomy Review, page 8

Synaptic Cleft: Information Transfer

Neurotransmitters

•Chemicals used for neuronal communication with the body and the brain

•50 different neurotransmitters have been identified

Classified chemically and functionally

Chemical Neurotransmitters

- Acetylcholine (ACh)
- Biogenic amines
- Amino acids
- Peptides

Novel messengers: ATP and dissolved gases NO and CO

Neurotransmitters: Acetylcholine

- •First neurotransmitter identified, and best understood
- Released at the neuromuscular junction
- Synthesized and enclosed in synaptic vesicles

Neurotransmitters: Acetylcholine

- Degraded by the enzyme acetylcholinesterase (AChE)
- Released by:
 - -All neurons that stimulate skeletal muscle
 - -Some neurons in the autonomic nervous system

Neurotransmitters: Biogenic Amines

Include:

 Catecholamines – dopamine, norepinephrine (NE), and epinephrine

-Indolamines – serotonin and histamine

Broadly distributed in the brain

Play roles in emotional behaviors and our biological clock

Functional Classification of Neurotransmitters

Two classifications: excitatory and inhibitory

- Excitatory neurotransmitters cause depolarizations (e.g., glutamate)
- Inhibitory neurotransmitters cause hyperpolarizations (e.g., GABA and glycine)

Functional Classification of Neurotransmitters

 Some neurotransmitters have both excitatory and inhibitory effects

Determined by the receptor type of the postsynaptic neuron

Example: acetylcholine

•Excitatory at neuromuscular junctions with skeletal muscle

-Inhibitory in cardiac muscle

Neurotransmitter Receptor Mechanisms

Direct: neurotransmitters that open ion channels

- Promote rapid responses
- -Examples: ACh and amino acids
- **-Indirect**: neurotransmitters that act through second messengers
 - Promote long-lasting effects
 - Examples: biogenic amines, peptides, and dissolved gases

PLAY InterActive Physiology ®: Nervous System II: Synaptic Transmission

Neurotransmitter Receptor Mechanism

Autonomic Nervous System (ANS)

•The ANS consists of motor neurons that:

- -Innervate smooth and cardiac muscle and glands
- Make adjustments to ensure optimal support for body activities
- Have viscera as most of their effectors

ANS in the Nervous System

Copyright $\textcircled{\sc 0}$ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

ANS Versus Somatic Nervous System (SNS)

- •The ANS differs from the SNS in the following three areas
 - Effectors
 - Efferent pathways
 - Target organ responses

Comparison of Somatic and Autonomic Systems

= Preganglionic axons - - = Postganglionic axons = Myelination = Preganglionic axons - - = Postganglionic axons (sympathetic) (parasympathetic) (parasympathetic)

Divisions of the ANS

- -ANS divisions: sympathetic and parasympathetic
- •The **sympathetic** mobilizes the body during extreme situations
- •The **parasympathetic** performs maintenance activities and conserves body energy
- The two divisions counterbalance each other

Role of the Sympathetic Division

- •The sympathetic division is the "fight-or-flight" system
- -Involves E activities exercise, excitement, emergency, and embarrassment
- Promotes adjustments during exercise blood flow to organs is reduced, flow to muscles is increased
- Its activity is illustrated by a person who is threatened
 - -Heart rate increases, and breathing is rapid and deep
 - •The skin is cold and sweaty, and the pupils dilate

Role of the Parasympathetic Division

- Concerned with keeping body energy use low
- Involves the D activities digestion, defecation, and diuresis
- Its activity is illustrated in a person who relaxes after a meal
 - Blood pressure, heart rate, and respiratory rates are low
 - -Gastrointestinal tract activity is high
 - •The skin is warm and the pupils are constricted

Anatomy of ANS

Division	Origin of Fibers	Length of Fibers	Location of Ganglia
Sympathetic	Thoracolumbar region of the spinal cord	Short preganglionic and long postganglionic	Close to the spinal cord
Parasympathetic	Brain and sacral spinal cord	Long preganglionic and short postganglionic	In the visceral effector organs

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Figure 14.3

Cranial Nerves

Parasympathetic Division Outflow

Cranial Outflow	Cranial Nerve	Ganglion	Effector Organ(s)
	Occulomotor (III)	Ciliary	Eye
	Facial (VII)	Pterygopalatin Submandibular	Salivary, nasal, and lacrimal glands
	Glossopharyngeal (IX)	Otic	Parotid salivary glands
	Vagus (X)	Located within the walls of target organs	Heart, lungs, and most visceral organs
Sacral Outflow	S ₂ -S ₄	Located within the walls of the target organs	Large intestine, urinary bladder, ureters, and reproductive organs

Interactions of the Autonomic Divisions

- •Most visceral organs are innervated by both sympathetic and parasympathetic fibers
- •This results in dynamic antagonisms that precisely control visceral activity
- -Sympathetic fibers increase heart and respiratory rates, and inhibit digestion and elimination
- Parasympathetic fibers decrease heart and respiratory rates, and allow for digestion and the discarding of wastes

Thank You